Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Vet Pathol ; : 3009858231225500, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323378

RESUMEN

Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.

2.
Viruses ; 15(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140677

RESUMEN

Farmed mink are one of few animals in which infection with SARS-CoV-2 has resulted in sustained transmission among a population and spillback from mink to people. In September 2020, mink on a Michigan farm exhibited increased morbidity and mortality rates due to confirmed SARS-CoV-2 infection. We conducted an epidemiologic investigation to identify the source of initial mink exposure, assess the degree of spread within the facility's overall mink population, and evaluate the risk of further viral spread on the farm and in surrounding wildlife habitats. Three farm employees reported symptoms consistent with COVID-19 the same day that increased mortality rates were observed among the mink herd. One of these individuals, and another asymptomatic employee, tested positive for SARS-CoV-2 by real-time reverse transcription PCR (RT-qPCR) 9 days later. All but one mink sampled on the farm were positive for SARS-CoV-2 based on nucleic acid detection from at least one oral, nasal, or rectal swab tested by RT-qPCR (99%). Sequence analysis showed high degrees of similarity between sequences from mink and the two positive farm employees. Epidemiologic and genomic data, including the presence of F486L and N501T mutations believed to arise through mink adaptation, support the hypothesis that the two employees with SARS-CoV-2 nucleic acid detection contracted COVID-19 from mink. However, the specific source of virus introduction onto the farm was not identified. Three companion animals living with mink farm employees and 31 wild animals of six species sampled in the surrounding area were negative for SARS-CoV-2 by RT-qPCR. Results from this investigation support the necessity of a One Health approach to manage the zoonotic spread of SARS-CoV-2 and underscores the critical need for multifaceted public health approaches to prevent the introduction and spread of respiratory viruses on mink farms.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , Animales , Michigan/epidemiología , SARS-CoV-2/genética , Granjas , Visón , COVID-19/epidemiología , Genómica , Animales Salvajes
3.
Emerg Infect Dis ; 29(6): 1102-1108, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37069611

RESUMEN

We describe animal-to-human transmission of SARS-CoV-2 in a zoo setting in Indiana, USA. A vaccinated African lion with physical limitations requiring hand feeding tested positive for SARS-CoV-2 after onset of respiratory signs. Zoo employees were screened, monitored prospectively for onset of symptoms, then rescreened as indicated; results were confirmed by using reverse transcription PCR and whole-genome virus sequencing when possible. Traceback investigation narrowed the source of infection to 1 of 6 persons. Three exposed employees subsequently had onset of symptoms, 2 with viral genomes identical to the lion's. Forward contact tracing investigation confirmed probable lion-to-human transmission. Close contact with large cats is a risk factor for bidirectional zoonotic SARS-CoV-2 transmission that should be considered when occupational health and biosecurity practices at zoos are designed and implemented. SARS-CoV-2 rapid testing and detection methods for big cats and other susceptible animals should be developed and validated to enable timely implementation of One Health investigations.


Asunto(s)
COVID-19 , Leones , Animales , Humanos , SARS-CoV-2/genética , COVID-19/veterinaria , Indiana/epidemiología , Trazado de Contacto
4.
J Am Vet Med Assoc ; 261(4): 480-489, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36595371

RESUMEN

OBJECTIVE: To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the US. ANIMALS: 204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021. PROCEDURES: Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory, and epidemiologic information through a standardized One Health surveillance process developed by the CDC and partners. RESULTS: Among dogs and cats identified through passive surveillance, 94% (n = 87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days after exposure in both cats and dogs. Antibodies were detected starting 5 days after exposure, and titers were highest at 9 days in cats and 14 days in dogs. CLINICAL RELEVANCE: Results of the present study supported that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that include both people and animals are necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Gatos , Humanos , Perros , Estados Unidos/epidemiología , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Gatos/epidemiología , Enfermedades de los Perros/epidemiología , Zoonosis/epidemiología , Mascotas
5.
Sci Rep ; 12(1): 8588, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597789

RESUMEN

Effectively preventing and controlling zoonotic diseases requires a One Health approach that involves collaboration across sectors responsible for human health, animal health (both domestic and wildlife), and the environment, as well as other partners. Here we describe the Generalizable One Health Framework (GOHF), a five-step framework that provides structure for using a One Health approach in zoonotic disease programs being implemented at the local, sub-national, national, regional, or international level. Part of the framework is a toolkit that compiles existing resources and presents them following a stepwise schematic, allowing users to identify relevant resources as they are required. Coupled with recommendations for implementing a One Health approach for zoonotic disease prevention and control in technical domains including laboratory, surveillance, preparedness and response, this framework can mobilize One Health and thereby enhance and guide capacity building to combat zoonotic disease threats at the human-animal-environment interface.


Asunto(s)
Salud Única , Animales , Animales Salvajes , Creación de Capacidad , Laboratorios , Zoonosis/epidemiología , Zoonosis/prevención & control
6.
Zoonoses Public Health ; 69(5): 587-592, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35426241

RESUMEN

SARS-CoV-2 infection has been described in a wide range of species, including domestic animals such as dogs and cats. Illness in dogs is usually self-limiting, and further diagnostics may not be pursued if clinical signs resolve or they respond to empirical treatment. As new variants emerge, the clinical presentation and role in transmission may vary in animals. This report highlights different clinical presentations and immunological responses in two SARS-CoV-2 Delta-variant-positive dogs with similar exposure to the same fully vaccinated human with a SARS-CoV-2 infection and emphasizes the need for active surveillance and additional One Health research on SARS-CoV-2 variant infections in companion animals and other species.


Asunto(s)
COVID-19 , Enfermedades de los Perros , Animales , Animales Domésticos , COVID-19/veterinaria , Enfermedades de los Gatos , Gatos , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Perros , Georgia , Humanos , SARS-CoV-2/genética
7.
Transbound Emerg Dis ; 69(3): 1656-1658, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33955193

RESUMEN

As part of a longitudinal household transmission study of pets living with persons with COVID-19 in Texas, two pets were confirmed to be infected with the SARS-CoV-2 B.1.1.7 variant of concern (VOC). The pets were a dog and a cat from the same household, sampled two days after their owner tested positive for COVID-19. The oral, nasal and fur swabs for both pets tested positive for SARS-CoV-2 by qRT-PCR and consensus whole-genome sequences from the dog and cat were 100% identical and matched the B.1.1.7 VOC. Virus was isolated from the cat's nasal swab. One month after initial detection of infection, the pets were re-tested twice at which time only the fur swabs (both pets) and oral swab (dog only) remained positive, and neutralizing antibodies for SARS-CoV-2 were present in both animals. Sneezing by both pets was noted by the owner in the weeks between initial and follow-up testing. This study documents the first detection of B.1.1.7. in companion animals in the United States, and the first genome recovery and isolation of B.1.1.7 variant of concern globally in any animal.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , COVID-19/diagnóstico , COVID-19/veterinaria , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Perros , Humanos , SARS-CoV-2 , Texas
8.
J Am Vet Med Assoc ; 259(9): 1032-1039, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34647475

RESUMEN

OBJECTIVE: To establish a pathoepidemiological model to evaluate the role of SARS-CoV-2 infection in the first 10 companion animals that died while infected with SARS-CoV-2 in the US. ANIMALS: 10 cats and dogs that tested positive for SARS-CoV-2 and died or were euthanized in the US between March 2020 and January 2021. PROCEDURES: A standardized algorithm was developed to direct case investigations, determine the necessity of certain diagnostic procedures, and evaluate the role, if any, that SARS-CoV-2 infection played in the animals' course of disease and death. Using clinical and diagnostic information collected by state animal health officials, state public health veterinarians, and other state and local partners, this algorithm was applied to each animal case. RESULTS: SARS-CoV-2 was an incidental finding in 8 animals, was suspected to have contributed to the severity of clinical signs leading to euthanasia in 1 dog, and was the primary reason for death for 1 cat. CONCLUSIONS AND CLINICAL RELEVANCE: This report provides the global community with a standardized process for directing case investigations, determining the necessity of certain diagnostic procedures, and determining the clinical significance of SARS-CoV-2 infections in animals with fatal outcomes and provides evidence that SARS-CoV-2 can, in rare circumstances, cause or contribute to death in pets.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , COVID-19/veterinaria , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Perros , Mascotas , SARS-CoV-2
9.
Viruses ; 13(5)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069453

RESUMEN

Understanding the ecological and epidemiological roles of pets in the transmission of SARS-CoV-2 is critical for animal and human health, identifying household reservoirs, and predicting the potential enzootic maintenance of the virus. We conducted a longitudinal household transmission study of 76 dogs and cats living with at least one SARS-CoV-2-infected human in Texas and found that 17 pets from 25.6% of 39 households met the national case definition for SARS-CoV-2 infections in animals. This includes three out of seventeen (17.6%) cats and one out of fifty-nine (1.7%) dogs that were positive by RT-PCR and sequencing, with the virus successfully isolated from the respiratory swabs of one cat and one dog. Whole-genome sequences of SARS-CoV-2 obtained from all four PCR-positive animals were unique variants grouping with genomes circulating among people with COVID-19 in Texas. Re-sampling showed persistence of viral RNA for at least 25 d-post initial test. Additionally, seven out of sixteen (43.8%) cats and seven out of fifty-nine (11.9%) dogs harbored SARS-CoV-2 neutralizing antibodies upon initial sampling, with relatively stable or increasing titers over the 2-3 months of follow-up and no evidence of seroreversion. The majority (82.4%) of infected pets were asymptomatic. 'Reverse zoonotic' transmission of SARS-CoV-2 from infected people to animals may occur more frequently than recognized.


Asunto(s)
COVID-19/epidemiología , COVID-19/veterinaria , Mascotas/virología , Animales , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/inmunología , Enfermedades de los Gatos/virología , Gatos/virología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/virología , Perros/virología , Humanos , Estudios Longitudinales , Mascotas/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Texas/epidemiología
10.
Emerg Infect Dis ; 27(4): 1015-1022, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33770472

RESUMEN

The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.


Asunto(s)
Coronaviridae/aislamiento & purificación , Infecciones por Coronavirus/veterinaria , Reservorios de Enfermedades/veterinaria , Zoonosis/virología , Alphacoronavirus/aislamiento & purificación , Animales , Animales Salvajes , Betacoronavirus/aislamiento & purificación , COVID-19/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Reservorios de Enfermedades/virología , Especificidad del Huésped , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Pandemias , SARS-CoV-2 , Zoonosis/epidemiología
11.
bioRxiv ; 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33330861

RESUMEN

The natural infections and epidemiological roles of household pets in SARS-CoV-2 transmission are not understood. We conducted a longitudinal study of dogs and cats living with at least one SARS-CoV-2 infected human in Texas and found 47.1% of 17 cats and 15.3% of 59 dogs from 25.6% of 39 households were positive for SARS-CoV-2 via RT-PCR and genome sequencing or neutralizing antibodies. Virus was isolated from one cat. The majority (82.4%) of infected pets were asymptomatic. Re-sampling of one infected cat showed persistence of viral RNA at least 32 d-post human diagnosis (25 d-post initial test). Across 15 antibody-positive animals, titers increased (33.3%), decreased (33.3%) or were stable (33.3%) over time. A One Health approach is informative for prevention and control of SARS-CoV-2 transmission.

12.
MMWR Morb Mortal Wkly Rep ; 69(23): 710-713, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32525853

RESUMEN

On April 22, CDC and the U.S. Department of Agriculture (USDA) reported cases of two domestic cats with confirmed infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). These are the first reported companion animals (including pets and service animals) with SARS-CoV-2 infection in the United States, and among the first findings of SARS-CoV-2 symptomatic companion animals reported worldwide. These feline cases originated from separate households and were epidemiologically linked to suspected or confirmed human COVID-19 cases in their respective households. Notification of presumptive positive animal test results triggered a One Health* investigation by state and federal partners, who determined that no further transmission events to other animals or persons had occurred. Both cats fully recovered. Although there is currently no evidence that animals play a substantial role in spreading COVID-19, CDC advises persons with suspected or confirmed COVID-19 to restrict contact with animals during their illness and to monitor any animals with confirmed SARS-CoV-2 infection and separate them from other persons and animals at home (1).


Asunto(s)
Betacoronavirus/aislamiento & purificación , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Pandemias/veterinaria , Mascotas/virología , Neumonía Viral/diagnóstico , Neumonía Viral/veterinaria , Animales , COVID-19 , Gatos , Infecciones por Coronavirus/transmisión , Femenino , Humanos , Masculino , New York , Neumonía Viral/transmisión , SARS-CoV-2 , Zoonosis
14.
Ecology ; 98(5): 1476, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28273333

RESUMEN

Illuminating the ecological and evolutionary dynamics of parasites is one of the most pressing issues facing modern science, and is critical for basic science, the global economy, and human health. Extremely important to this effort are data on the disease-causing organisms of wild animal hosts (including viruses, bacteria, protozoa, helminths, arthropods, and fungi). Here we present an updated version of the Global Mammal Parasite Database, a database of the parasites of wild ungulates (artiodactyls and perissodactyls), carnivores, and primates, and make it available for download as complete flat files. The updated database has more than 24,000 entries in the main data file alone, representing data from over 2700 literature sources. We include data on sampling method and sample sizes when reported, as well as both "reported" and "corrected" (i.e., standardized) binomials for each host and parasite species. Also included are current higher taxonomies and data on transmission modes used by the majority of species of parasites in the database. In the associated metadata we describe the methods used to identify sources and extract data from the primary literature, how entries were checked for errors, methods used to georeference entries, and how host and parasite taxonomies were standardized across the database. We also provide definitions of the data fields in each of the four files that users can download.


Asunto(s)
Sistemas de Administración de Bases de Datos , Mamíferos/parasitología , Parásitos , Animales , Animales Salvajes , Carnívoros , Helmintos , Interacciones Huésped-Parásitos , Humanos
15.
Malar J ; 15: 460, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27604542

RESUMEN

BACKGROUND: Health clinics in rural Africa are typically resource-limited. As a result, many patients presenting with fever are treated with anti-malarial drugs based only on clinical presentation. This is a considerable issue in Uganda, where malaria is routinely over-diagnosed and over-treated, constituting a wastage of resources and an elevated risk of mortality in wrongly diagnosed patients. However, rapid diagnostic tests (RDTs) for malaria are increasingly being used in health facilities. Being fast, easy and inexpensive, RDTs offer the opportunity for feasible diagnostic capacity in resource-limited areas. This study evaluated the rate of malaria misdiagnosis and the accuracy of RDTs in rural Uganda, where presumptive diagnosis still predominates. Specifically, the diagnostic accuracy of "gold standard" methods, microscopy and PCR, were compared to the most feasible method, RDTs. METHODS: Patients presenting with fever at one of two health clinics in the Kabarole District of Uganda were enrolled in this study. Blood was collected by finger prick and used to administer RDTs, make blood smears for microscopy, and blot Whatman FTA cards for DNA extraction, polymerase chain reaction (PCR) amplification, and sequencing. The accuracy of RDTs and microscopy were assessed relative to PCR, considered the new standard of malaria diagnosis. RESULTS: A total of 78 patients were enrolled, and 31 were diagnosed with Plasmodium infection by at least one method. Comparing diagnostic pairs determined that RDTs and microscopy performed similarly, being 92.6 and 92.0 % sensitive and 95.5 and 94.4 % specific, respectively. Combining both methods resulted in a sensitivity of 96.0 % and specificity of 100 %. However, both RDTs and microscopy missed one case of non-falciparum malaria (Plasmodium malariae) that was identified and characterized by PCR and sequencing. In total, based on PCR, 62.0 % of patients would have been misdiagnosed with malaria if symptomatic diagnosis was used. CONCLUSIONS: Results suggest that diagnosis of malaria based on symptoms alone appears to be highly inaccurate in this setting. Furthermore, RDTs were very effective at diagnosing malaria, performing as well or better than microscopy. However, only PCR and DNA sequencing detected non-P. falciparum species, which highlights an important limitation of this test and a treatment concern for non-falciparum malaria patients. Nevertheless, RDTs appear the only feasible method in rural or resource-limited areas, and therefore offer the best way forward in malaria management in endemic countries.


Asunto(s)
Errores Diagnósticos , Pruebas Diagnósticas de Rutina/métodos , Fiebre de Origen Desconocido/diagnóstico , Fiebre de Origen Desconocido/etiología , Malaria/diagnóstico , Malaria/epidemiología , Adolescente , Adulto , África , Anciano , Anciano de 80 o más Años , Sangre/parasitología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microscopía , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Población Rural , Uganda/epidemiología , Adulto Joven
16.
Vet Parasitol ; 226: 167-73, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27514903

RESUMEN

Tick-borne hemoparasites (TBHs) are a group of pathogens of concern in animal management because they are associated with a diversity of hosts, including both wild and domestic species. However, little is known about how frequently TBHs are shared across the wildlife-livestock interface in natural settings. Here, we compared the TBHs of wild Grant's gazelle (Nanger granti) and domestic sheep (Ovis aries) in a region of Kenya where these species extensively overlap. Blood samples collected from each species were screened for piroplasm and rickettsial TBHs by PCR-based amplification of 18S/16S ribosomal DNA, respectively. Overall, 99% of gazelle and 66% of sheep were positive for Babesia/Theileria, and 32% of gazelle and 47% sheep were positive for Anaplasma/Ehrlichia. Sequencing a subset of positive samples revealed infections of Theileria and Anaplasma. Sequences sorted into seven phylogenetically distinct genotypes-two Theileria, and five Anaplasma. With the exception of a putatively novel Anaplasma lineage from Grant's gazelle, these genotypes appeared to be divergent forms of previously described species, including T. ovis, A. ovis, A. bovis, and A. platys. Only one genotype, which clustered within the A. platys clade, contained sequences from both gazelle and sheep. This suggests that despite niche, habitat, and phylogenetic overlap, the majority of circulating tick-borne diseases may not be shared between these two focal species.


Asunto(s)
Anaplasmosis/epidemiología , Antílopes/parasitología , Enfermedades de las Ovejas/parasitología , Theileriosis/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Anaplasma/clasificación , Anaplasma/genética , Anaplasmosis/parasitología , Anaplasmosis/transmisión , Animales , Animales Domésticos , Animales Salvajes , Babesiosis/epidemiología , Babesiosis/parasitología , Ehrlichiosis/epidemiología , Ehrlichiosis/parasitología , Ehrlichiosis/veterinaria , Genotipo , Kenia/epidemiología , Funciones de Verosimilitud , Filogenia , Prevalencia , Ovinos , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/transmisión , Theileria/clasificación , Theileria/genética , Theileriosis/parasitología , Theileriosis/transmisión , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/transmisión
17.
J Virol ; 90(15): 6724-6737, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27170760

RESUMEN

UNLABELLED: Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. IMPORTANCE: Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts.


Asunto(s)
Infecciones por Arterivirus/epidemiología , Evolución Biológica , Infecciones por Flaviviridae/epidemiología , Variación Genética , Infecciones por Lentivirus/epidemiología , Carga Viral , África/epidemiología , Animales , Animales Salvajes , Arterivirus/genética , Arterivirus/patogenicidad , Infecciones por Arterivirus/genética , Infecciones por Arterivirus/virología , Flaviviridae/genética , Flaviviridae/patogenicidad , Infecciones por Flaviviridae/genética , Infecciones por Flaviviridae/virología , Genoma Viral , Haplorrinos , Humanos , Lentivirus/genética , Lentivirus/patogenicidad , Infecciones por Lentivirus/genética , Infecciones por Lentivirus/virología , Filogenia , Prevalencia
18.
Oryx ; 49(4): 636-642, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26456977

RESUMEN

Impoverished communities often turn to illegal extraction of resources from protected areas to alleviate economic pressures or to make monetary gains. Such practices can cause ecological damage and threaten animal populations. These communities also often face a high disease burden and typically do not have access to affordable health care. Here we argue that these two seemingly separate challenges may have a common solution. In particular, providing health care to communities adjacent to protected areas may be an efficient and effective way to reduce the disease burden while also improving local perceptions about protected areas, potentially reducing illegal extraction. We present a case study of a health centre on the edge of Kibale National Park, Uganda. The centre has provided care to c. 7,200 people since 2008 and its outreach programme extends to c. 4,500 schoolchildren each year. Contrasting the provision of health care to other means of improving community perceptions of protected areas suggests that health clinics have potential as a conservation tool in some situations and should be considered in future efforts to manage protected areas.

19.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26311670

RESUMEN

Non-lethal parasite infections are common in wildlife, but there is little information on their clinical consequences. Here, we pair infection data from a ubiquitous soil-transmitted helminth, the whipworm (genus Trichuris), with activity data from a habituated group of wild red colobus monkeys (Procolobus rufomitratus tephrosceles) in Kibale National Park, Uganda. We use mixed-effect models to examine the relationship between non-lethal parasitism and red colobus behaviour. Our results indicate that red colobus increased resting and decreased more energetically costly behaviours when shedding whipworm eggs in faeces. Temporal patterns of behaviour also changed, with individuals switching behaviour less frequently when whipworm-positive. Feeding frequency did not differ, but red colobus consumption of bark and two plant species from the genus Albizia, which are used locally in traditional medicines, significantly increased when animals were shedding whipworm eggs. These results suggest self-medicative plant use, although additional work is needed to verify this conclusion. Our results indicate sickness behaviours, which are considered an adaptive response by hosts during infection. Induction of sickness behaviour in turn suggests that these primates are clinically sensitive to non-lethal parasite infections.


Asunto(s)
Conducta Animal , Colobinae/parasitología , Conducta de Enfermedad/fisiología , Tricuriasis/veterinaria , Trichuris , Albizzia , Animales , Colobinae/psicología , Dieta/veterinaria , Heces/parasitología , Medicina Tradicional Africana , Corteza de la Planta , Descanso , Tricuriasis/patología , Tricuriasis/psicología , Uganda
20.
PLoS Negl Trop Dis ; 8(10): e3256, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340752

RESUMEN

BACKGROUND: Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. METHODS AND FINDINGS: We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. CONCLUSIONS AND SIGNIFICANCE: Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.


Asunto(s)
Especificidad del Huésped , Primates/parasitología , Tricuriasis/parasitología , Trichuris/aislamiento & purificación , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Pan troglodytes/parasitología , Papio/parasitología , Filogenia , Reacción en Cadena de la Polimerasa , Tricuriasis/transmisión , Tricuriasis/veterinaria , Trichuris/clasificación , Trichuris/genética , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...